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A GENERALIZED CAUCHY PROBLEM FOR THE LINEAR DIFFERENTIAL EQUATIONS 
OF COUPLED PHYSICAL - MECHANICAL FIELDS* 

R.I. MOKRIK and YU.A. PYR'EV 

A generalized Cauchy problem for a partial differential equation with 
constant coefficients, which is encountered in the study of physical 
processes in continuous media with widened physical - mathematical fields 
(see /l/) (generalized coupled thermoeleasticity /2/, coupled thermo- 
eleasticity, porous media saturated with a viscous fluid /5/, mass and 
heat transfer /6/, linearized magnetoelasticity /7/, etc.) is considered. 
The characteristic properties of the solution of the problem, under 
certain constraints imposed on an equation by the stability condition, 
are studied. The presence of waves of higher and lower order is 
characteristic for the solution; in the course of time the lower-order 
waves are maintained and take a characteristic form. In the general 
case, the solution is represented in the form of integrals over the 
segments which link the singular points of Fourier - Laplace transforms 
with respect to time of the solution under consideration. The methods 
proposed enable an exact investigation to be madeofthe processes 
described by the equation for any time constants, and they also enable 
one to isolate the singularities at the fronts of propagating perturbations. 
As an application, the dynamic processes taking place ina thermoelastic 
subsapce (2) as a result of applying a mechanical and a thermal input 
at the boundary is studied. It is shown that in the case of unit 
perturbation of the boundary, the stress and temperature waves in the 
course of time assume a bell-shaped form and propagate with adiabatic 
velocity. A numerical analysis of the process which occurs due to sudden 
application of the force and of the thermal shock at the boundary is given. 

1. Consider a differential equation with constant coefficients of the form 

(1.1) 

where R" is an n-dimensional real space. This equation is the most common for all the problems 
mentioned above. 

The generalized Cauchy problem for Eq.(l .l) with the source Y (E. T), e+n~Y (c. 7) E S', Y (i, 

7)= U when 7(i) is defined (see /6/) as the problem of finding the generalized function 
0 (E, 7)? c+*a (E, 7) E S' which satisfies (l.l), and when T< 0 vanishes for a certain 02 > 0. 
This is equivalent to finding a solution of (1.1) which satisfies the causality principle 
widely used in physics /9/. Here s’ is the space of generalized slowly increasing functions, 
i.e. the space of linear ccntinuous functionals in the space S of rapidly decreasing basic 
functions. 

Let us find the soluticn @'l (;. T)(/ = (l.....b) of the generalized Cauchy problem (1.1) with 
sources of the form 

Y (E. 7) = 6") (t) f (T), 1 = 0, . . .( 4 (1.2) 

where j(7) = D_' (oo) (f (7) = 0 for T< 0. e-“*Tf(7)E 5” for all ~,>a,), and 6(E) is the Dirac 
function. If f(l)= 6(~) then @,,(E, 7) is the delayed Green function. 

We shall construct the solution of (1.1) with the source (1.2) by using Fourier transformion 
with respect to the coordinate E. which we define by the relation 

(F [@I, e) = (0, I‘ lql). Q, E S’. 9: E s 

(see /ES/), where 

F [VI(~) = T m(E) eitk dE 
-05 
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is the Fourier transform of the basic functions cp~S , and the Fourier-Laplace transform with 
respect to time, which we determine from the formula 

L [fl (0) = Flj (T) e-4 (a& %> =o; 0 = or+ io,, 

f (7) ED,' (aa) 

Applying thheSe transforms we obtain 

L [F [U+ll = (--ik)’ L [/I’D (w, k), D (w, k)= (1.3) 
M (-ik, -iw) = (--ik)’ + (-ik)*[h, (-io) + 

$2 (-iw)21 d- a03 (-io)S i- alJ* (-do) 

The dispersion equation D (0, k) = 0, be ing a function of two complex variables 61 and k, 
for a#0 determines four zeros oj(k)(j = i,...,4) as functions of k, of four zeros k, (0) 
(j = i, . . .* 4) as functions of 0. We write the latter in the form 

k,,, (0) = (0’2)‘:: [-aLto - ia,, f 52 (o)l‘/* (1.4) 

&,a (0) = --km (4 
$2 (64 = l(a,,o + ia,de - 40 I&W +- ifk#~ = 

pl’/a (w - w+)‘;* (0 - m_)‘i*, co* = -io,’ f o1 

WI0 = 2ppr”‘fPl, o*O = ps’p,, PI = c$*e - 4%, 

pn = az,aalao3 - a81~a06 - aos2, pa = a22a21 - 2a03 

we shall use the branch cuts, which connect the branch points w*, 6.1 = 0, w = -iuos,ap, of 
the functions k,(o) and k*(u), in accordance with /lo/ where the analytic properties of 
this type of function are disucssed, and fix the function branches by the condition 
Imk,,,(o)>const>O as Imw-++m. By the Routh-Hurwitz Criterion, 

Im tij (k) < 0, j =: 1, . . ., 4, kER’, k#O (1.5) 

with the following constraints imposed on the coefficients of Eq.(l.l): 

azl < 0, a22 C 0, ao3 > 0, a,, > 0, P2 > 0 (1.6) 

Clearly, condition (1.5) is a condition of the absolute stability of the system described by 
Eq.(l.l), e.g. from the fact that y (E.rf E t)+'{a,) with respect to T it follows that Q, {E, 
7) ED,' (4 with respect to T, where ub is an arbitrary positive number. 

Following /ll/, the equation for which inequality (1.5) is satisfied is referred to as 
the Petrovskii correct equation, and under the condition 

ao4 > 0, a22 < 0, pl> 0 (1.7) 
Eq.ll.1) is hyperbolic. On writing it in the forrr 

[n (C-98$ - d,?) jr+%;? - 6,2) - a, (cO%i:' - $")I ct, (E. 1) = Y (F. T) (1.8) 

c* = 12 (--ffZ? r I'I,V-. Cb = I-o,, 0Ql'l. r1 = OC( QCV3 

we see that the stability cf its solution follows from the satisfaction cf the conditions 

c_ > cg > c, > 0. 11 > 0 (1.9) 

(see /12/J . It can be shown that these conditions are equivalent to (1.6) and (1.7). 
In addition, it can be shown by analogy with /13/ that if conditions (1.6!, (1.7) are 

satisfied, we have 
Im k,,, (of> U for Im o> 0 (i.40) 

thatisspace attenuation of waves occurs (the outside signal does not increase in proportion 
to the distance frorr. the boundary). 

By performing an inverse Fourier transformation, taking condition (1.10) into account, 
the solution CD1 (i. T) = $'a, (t. t) (I = 0. ., 4) of (1.1) with sources (1.2) can be expressed 
in tems of the five functions Gj(j i /, T+ n) (j = 1. 2,s. 5,6) in the form 

@fJ = --lilpG3 {I E 1. T. 2) + f (T), ‘& = 1’2 G, (1 E 1, T‘, iI* fl.11, 

! (~1 sign E 

@'? = -'.'2G,(l E I. T. O)*! (T). @, =I ~I-u,~G, (i E 1. K. -l)- 

a,,G, (1 E I. T, 0) - Gz (i E /. T. --I)] * f (~)sign F 

a,( = ", la,,G, (1 : I. T. -2) + a,,G, (1 E; I, T. --I) - 

Gs (i E 1. T. -2)l * j (1) -I- 6 (F)! (7) 

where the functions G,(l $ /.t,n) are written using the inversion formula for Fourier-Laplace 
transforms, (see /6/j, 



(an asterisk denotes the convolution of the functions with respect to s) The value of m is 
chosen from the condition of absolute integrability of the integrand with respect to o,~ R'. 

Note that, for the functions Gj(j tl,t,n), the relations 

are valid. 

2. Let us find the properties of the functions Gi(I El* r,n) by which the solutions of the 
generalized Cauchy problem and its derivatives are expressed. 

Using an asymptotic representation of the function G,,L(l El, o, n) as o+m, the functions 
Gj, (1 E 1, r, n)(P = f,2) in the vicinity of the wavefronts z = 1 El ic, can be expressed as 

G.h (I E 1. 5, n) = fj’ exp (-tl, f E f ) D,,, (7,) E, (T,)‘ (2.1) 
GJS (i ! 1. 7, n) = (--1)‘fj- exp t--q_ 1 E i ) Lb+, (L) E_ (L) 

Q=T---jEI!c*. 1*+0. &(2)=11+0()7*C*~)1, r-+0 

ff = 1, f$= c*ff, f$ =etc*.( f$= ilc* 

The function Da(x) is a generalized function from the space D,‘(O) which depends on the 
real parameter a. --a3 <a< - 00 /a/, 

4 (J) = 
i 

H(J)P'/r(a),CL> 0 

dSUe.~ dz, a<0,aT4V>0,.V is an integer. 

H(r) = 0 for r< 0. H(x) = 1 for J,‘ U. and DO (s) = 6(x). In relations (2.1), we note the 
form of the attenuation coefficients T& as the velocity functions, fromwhich follows the fact 
that a "wave hierarchy" is necessary for qi to be positive, that is condition (1.91 must be 
satisfied. 

As T-+ 00, we can express the function G, ([ 5 I.T.~) as 

(2.2) 

where [r(n A (3 - mf ?)I-’ = 0 if II - (3 -m):! = 0. --i. -Z?....;f(r) is the gamma function. The 
non-zero coefficients qJm have the form 

Q14 = -(-a,,)-‘* I : 1, 9x2 = 2. g** = -(-a,,)‘* j E / 

q33 = - (-u:IuoJ)-’ f. 934 = (--a,,)‘~ 

qso = (--a,,)-’ 9 1 E 1 * 2 

qs2 = (-a*,)-‘:. 963 = - I(-a03 a21)‘i~~‘a21 + / i i 1 

qao = (--a,,)’ 2. +a, = &I I(-Qoa'Q,,)l'Yk,, -r i : 1 j 

Notice that the function Gj(I El. 1. n) 5 D+‘(O) although its components 
0,’ (00). p = 1, 2. where (I@ = rnax (0. -tio2'). 

The behaviour of the functions Gi(i E/.r,n) at arbitrary distances behind the wave front, 
for large F and r can be determined by the method of steepest descents (see /9/). PUS, in 
the vicinity of T = 151 CO one can obtain the asymptotic formula 

Gi (I EL 7, n) -qjE (TO) * Fj (1. n). t + 0, TC~~V + 00 (2.3) 
E (~~1 = erp [- (r. T,)~I (x*,*T,~-~. 'to = T - I E 1 ;co 

tl = (4 1 i 1 y 'COJ)'. 

F, (T. n) = D,, (z), j = f, 3, 5; F, (T. n) = D,,, (T) 
1 = 2,6 

91 = -_rlc_%_?co~, qp = 1. qs = -?jc+~c_*,‘co 
qb = -_?c**c_2:eo3, q* = f ‘co. p = t) (co% - c+*j (c-2 - q’) (2co*) 
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The functions Gj (I El,?, n)(i = 1,2,3,5,6) can be expressed in the form of integrals over 
the segments which connect the branch points o = o-+,61 = 0, o = -i/q of the function k,(o) 
and k,(~). 

We shall give a representation of the functions 
which we will use in discussing specific problems, 

G, (I k 1, ~9 0) G, (I E I. T. i), G, (I F. 1, 'I, o), 

Gj (I E 1, 7, s) = 1, (I E II r, s) IH (r_) - H (7+)1 + 
11, (I E Iv 7, n) ff (7,) i (-i)jZ,s (I E I,7, n) H (7_) 

(2.4) 

(j = 1, 2, n = 0, 1) 
00 

zj(151,Tvn)= f exp(- f&Y) 

$ 
[%erp(-a+ IFiD + 

Yj, w (- a_ I E I)1 dx 
\p;o* = -&-’ cos ‘pi, VII* = (oso cos ‘pi + t sin cp*) Zo-lko* 

loo* = f&VIII*, lo = I (co,“)* - 251’ 1, ko = [(o,“)* + t+ 

‘F* = 1 g I y* - 722, y* = 2-Q [(Z” + X.fO)W+ + 

(ZO - X*“)‘a_I 

K, = (k, A oto)“~, C.Q = ~-VI [(Z” + _Tz&“)‘!eK_ - 

(Z” - X*“)‘;:K,l 

Z” = [(X*e)z i (YO)W, X*” = OlOUll - a,, f pI’I:Io 
Y” = -2a02 

1’9 

zjm(IElr74=+ (- f)'bn, 
6F 

exp (-7z) 
(- z)n+l 

8, sin(j E ((A#~*)& + 

6 InI erp(-Trr) e,sin(IEI(AZ)"I)d5-(-_)jd~, m=l, 2 
(- zy 

( a1 and 6, are alternative integration limits which depend on the coefficients pf Eq.(l.l), 
and 60 is an arbitrarily small quantity). 

Notice that this representation hclds for arb itrary values of the coefficients of Eq. 
(1.1) , which satisfy conditicn (1.6) and (1.7). 

As aor -+ 0, Eq.Cl.1) ceases tc be hyperbolic but representations (2.21, (2.3) and (2.4) 
for the functions G,(I II, 7,~) remain in force, it being necessary to take into account that 
c_ + 00, C, + (-a&"~, nc_* --c - c22;ao8 as a04 + 0. For a04 = 0 , we must replace the asymptotic 
expression (2.1) by the following: 

G,, (I E 1, 7, n) _ (-l)j~j”D, (7) * G, (1 E I 9 7)* 7 + +O 

U, (I 5 1, 7) = L', (1 E I, 7) = erfc (v), c', (I E 13 7) = 

(XT)-'.* erp (-L.?) 

(2.5) 

u, (I E /, 7) = U8 (I E 1, 7) = 2 IT"473 (I 5 I, 7) - 

UC, (I E /, 7)l 7"' 

V = (-a.,3 '&)"* (I E 1 !z).‘r”‘, f10 = --l/a,,, fso = 

(-%d%J” 
f*c = 1. fs” = fl”ifP, fs” = fSOfl 

3. Let us consider the dynamic processes in a thermoelastic half-space described by the 
following system of equations (see /2/j: 

{L,u) - {L&3) = 0, (U3) - (L‘U) = 0. z> 0, t> 0 (3.1) 

L, = arz - p (i. + 2~)-~8,~, L, = aI2 -x-‘&a,, L, = 

p (I. + 2p)-‘c?, 

L4 = mLoar**~ Lo = 1 + t,a,; p = Q (3h + 2F) 
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Here, U(I, t) is the displacement, 0(z,t) is the temperature, aais the coefficient of 

linear expansion, X, p are the Lam6 coefficients, t, is the relaxation time of the heat flux, 

no is the coupling coefficient, x is the thermal conductivity, p denotes the density, and 
a,=* = avataz. The derivatives in curly brackets should be understood in the classic sense, 
and the remaining ones in the generalized sense. 

The surface of the half-space is subjected to a mechanical and a thermal action as follows: 

0 (z. t) = (X + 2~) {a,u) - ge = P (i) for r = +0. t > 0 (3.2) 

0 (2, t)= T (i) for I = -t-O, 2 > 0 

where u is the normal stress. We assume theinitial condition to be zero: 

u = 13 = {a+) = {a,91 = 0 for t = SO, 2 > 0 (3.3) 

Extending the functions U(Z. t),O(r,t) by zero with respect to t for t<O. respectively 
evenly and oddly with respect to I for r< 0, and taking into account the connection between 
the classical derivatives and the generalized derivatives (see /g/j, we reduce problem (3.1), 
(3.21, (3.3) when t>O, to the equivalent generalized Cauchy problem for the system 

The solution of 

which are defined as 

and whose properties 
relations 

we can represent 

L+ - L,e = ql, L,e - L,u = +:oq r E R=, t E RI 

$1 = 26 (I) P @).(A + 2p), $* = 28') (r) T (t) 

this system can be expressed by the functions cpj(j = i,2) 

u = L2q1 i Lam,. e = L,T, i- L,p:, 
solutions of the generalized Cauchy problem for the equations 

(L,L* - L&*) Tj =J’j (i = 13 2) 

(3.4) 

in dimensionless variables are discussed above. Taking into account the 

= -_(I + E). a** = -1 -- ,!IJ (1 -i e). c70g = 1. 00, = .W 

q = .M?, y = E'(2C02). cg = (1 - E)'.', M = C1'Cg 

E 2 Onox(i. + :!p), Cl = (i - 2p)‘ : ‘C’. cp = (x,‘t,)“l 

MO = 1 - M2 (1 L E). P (1) = u*Po (1). T (t) = e,T,, (T) 

0 * = PO,. 7 = c,?t x. E = C]f x 
the dimensionless stress (JO* and temperature 00, in the form 

s (!, 1) (J* = lo, (i. T) - UfJ (E. T)l sign E 

e (E, T) e* = [e, (E, 7) T e6 (i. qi sign : 
(3.5) 

where the dimensionless stresses u, and temperature tl,, 
caused by mechanical action (thermal action), 

(the stress ug and the temperature 90) 
when the zero temperature (zero stress) is 

specified, in the form 

uo (E. ?) = ’ 2 [AfoG (I F (. T. -1) - co’G, (I : !. T. 0) + G, (I : 1 , T. -1)l rc PO (T) (3.6) 

$ (E, T) = E IG, (I :‘I, T. 0) - .wr, (1 i j. T. -1)) It PO (7) 

CQ (F. T) = G, (1 E 1. T. -I)* To (T) 

IFJo (E, 7) = 'i, [--.lf& (I i j. T. -1) - CO'G, (I E I. T. 0) 2. G, (i E 1, T. -1)J + 70 (T) 

Let us analyse the behaviour of a single perturbation of the stress and temperature 
specified at the boundary E = 0 of the thermoelastic space E> 0. 

The first (second) perturbation of the stresses ua- (Us') and CQ-(U~+) and temperatures 

Oa- (0,') and Oa-(!&,') propagates with velocity c_ (c,) 

Go' (E, T) = '!* (1 q= Mop,-"7) P" (Ty) exp (-nm!) (3.7) 
uas (i, T) = sp,-“:T~ (1;) exp (-nrE) 

e2 (g. T) = TE.W~,-‘;+~ (T=) exp (-T)~;) 

Oe' (E. T) = 'I2 (1 i .Vf~p~-"') To (11) exp (-n7Qr em + 0 

that is, for a fixed i the stress and temperature in the vicinity of the wavefront maintain 
the form of the input signal, but these perturbations decrease exponentially and become 
negligible at a distance of %. 

If we assume that the time scale r. is characteristic for the initial perturbation PO (r), 
and the scale ?a describes dTt, (r)‘dr that is PO (r),dTc (r)/dr are isolated pulses with the 
characteristic durations rg and le. then at distances T~>T:, rl>ra, rl) = P&,- the behaviour 
of the stress and temperature perturbations is described by the asymptotic expressions 

UO w E (TO) A,. Ue ,-d -Co -*E (To) Ae 

h - -~co-~E (~0) A,, Be _ wO-‘E (lo) A@, d.5 + 03, T - E/co 

A,=[P,(T)dv+, Ae= OEd 

s 
x To(r)dT< JC 

0 0 
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Thus, in the course of time the majority of the perturbations become bell-shaped and 
begin to propagate with the adiabatic velocity CO (c, = C~CO is the adiabatic velocity of propagation 
of an expansion wave). These waves spread, their width increases -rland the amplitude drops 
NT1‘l. This effect is a consequence of the singularities of the pulse propagation in the media 
with dispersion and absorption , and is common for all types of waves. 

A numerical analysis was carried out for the case of the sudden application of a mechanical 
action (PO t7) = H(T)) and a 'thermal shock /14/ (T,(f) = g(z)), and for a large coupling coefficient 
a== 0.46 (see /3, 15/), i.e. for the least favourable cases for numerical methods which were 
used in /16-19/far solving similar problems, and for the asymptotic methods of expanding the 
solution in terms of small parameter. In such a case, in accordance with (3.6) we have 

a0 (E. 7) = Vt IM,G, (E, 7, 0) - co*G, (6, 7, 1) + G, & ~7 0)l (3.8) 

6,& 7) = E IG, (E> 7, 1) + M'G (6, 7, W 

Ub (Et 7) = 4 (E, 7,O) 

8, (L 7) = % I-M&j (&, 7, 0) + co* Gl (f, 7, f) +Gr (531, @I 

where G,(E,r,n) are calculated from (2.4). 

Fig.2 

Fig.3 Fig.4 

Figs.1 and 2 show, foliowing (3.8) and (2.4), the variation of the dynamic stresses (solid 
lines) and temperatures (dashed lines! at a fixed cross-section E-1, as a function of the 
dimensionless time T fcr values of the parameter M equal to 0.1, 0.6 and 1.1 (curves 1-J). 
Figs.3 and 4 show the variation cf the same quantities, as a function of the dimensionless 
time 1 for ,W = 0.6 and 5 = 10.3,50 (curves d-6:. The circles, pcints and crosses show the 
res*;iting obtained by the asymptotic formlae (3.71, (2.21 and (2.3) respectively. 
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REDUCTION OF THREE-DIMENSIONAL DYNAMICAL ELASTICITY THEORY PROBLEMS 
WITH ARBITRARILY LOCATED PLANE SLITS TO INTEGRAL EQUATIONS* 

V.V. MYKHAS'KIV and M.V. KHAI 

By generalizing a method described earlier /l/ for reducing three-dimensional 
dynamical problems of elasticity theory for a body with a slit to integral 
equations, integral equations are obtained for an infinite body with 
arbitrarily located plane slits. The interaction of disc-shaped slits 
located in one plane is investigated when normal external forces that vary 
sinusoidally with time (steady vibrations) are given on their surfaces. 

Problems of the reduction of dynamical three-dimensional elasticity 
theory problems to integral equations for an infinite body weakened by a 
plane slit were examined in /l, 2/. The solution of the initial problem 
is obtained in /l/ by applying a Laplace integral transform in time to 
the appropriate equations and constructing the solution in the form of 
Helmholtz potentials with densities characterizing the opening of the slit 
during deformation of the body. The problem under consideration is solved 
in /2/ by using the fundamental Stokes solution /3/ with subsequent 
construction of the solution in the form of an analogue of the elastic 
potential of a double layer. 

1. We consider an ealstic infinite body weakened by plane arbitrarily located slits whose 
opposite surfaces S,,+ and S,-(n = 1,2...., N) are subjected to selfequilibrated external forces 
varying with time t. We consider the initial conditions of the problem to be zero. 

We select a basic Cartesian coordinate system 0x1z1r5 with origin Oat an arbitrary point 
of the body and local coordinate systems O,,X~,,I~X~ (n = I,%..., h') in such a way that the 
domain S, which the n-th slit occupies would be contained in the coordinate plane ~,,,O,,T~~. while 
the values zg, = &O (Fig.11 would correspond to thesurfaces S,,*.Let z denote the point with 
coordinates (z1r zp. r9). 
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